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Abstract
The optical conductivity of charge carriers coupled to quantum phonons is
studied in the framework of the one-dimensional spinless Holstein model.
For one electron, variational diagonalization yields exact results in the
thermodynamic limit, whereas at finite carrier density analytical approximations
based on previous work on single-particle spectral functions are obtained.
Particular emphasis is put on deviations from weak-coupling, small-polaron or
one-electron theories occurring at intermediate coupling and/or finite carrier
density. The analytical results are in surprisingly good agreement with
exact data, and exhibit the characteristic polaronic excitations observed in
experiments on manganites.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, there has been a lot of controversy about the possible interpretation of optical
data on strongly correlated electron systems such as manganites, cuprates and nickelates in
terms of polaronic charge carriers [1, 2]. It turns out that simple one-electron or perturbative
weak-/strong-coupling theories can usually not explain more than one type of experiment for
a given set of (realistic) parameters, and a general discussion of this issue for the case of the
manganites has been given in [3–5]. Owing to these discrepancies, and also in the light of
recent progress in the understanding of many-polaron systems [6–8], it is highly desirable to
revisit this problem using both analytical and numerical many-body methods.

Ignoring the necessity of taking into account cooperative Jahn–Teller effects to describe
orbital effects in manganites [4], an important issue in the framework of one-band models
concerns the validity of two complementary types of electron–phonon interaction, namely
the Holstein [9] and the Fröhlich model [10] for screened, local coupling and unscreened,
long-range electron–phonon interaction, respectively. Motivated by recent experimental results
and the absence of a unified theory for, e.g., ferromagnetic manganites [5], we analyse the
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signatures of polaronic excitations in the optical conductivity, both in the low-density limit and
at finite carrier density, in the framework of the one-dimensional spinless Holstein model.

Polaronic materials such as the manganites generally require a theory valid for finite carrier
density and all coupling regimes [4, 5]. Whereas a large number of works have reported
on approximate findings for the one-electron limit (the polaron problem) of the Holstein
model, here we present variational diagonalization results for the thermodynamic limit, thereby
providing an exact (numerical) solution. Exact data for finite clusters, also at finite temperature,
can be found in [11].

The many-electron case has been studied by approximate methods in the past [3, 12–14].
Moreover, exact results on finite clusters are available [15, 16]. In order to further improve the
present understanding, we examine the optical conductivity in the framework of electronic
spectral functions deduced by perturbative and variational methods valid at finite carrier
density [17, 18]. The important advantage of such calculations is the possibility to relate the
observed contributions to the optical response to specific processes (transitions) in the analytical
formulae, and to understand the relevance of the dependence of these contributions on the
model parameters. Special attention will be paid to the role played by the coherent (respectively
incoherent) parts of the spectral functions. We compare the analytical results to exact numerical
data, and discuss the differences between the weak-coupling (WC), intermediate-coupling (IC)
and strong-coupling (SC) regimes, as well as the influence of carrier density and phonon
frequency. In addition, we attempt to make a qualitative connection of our findings to recent
experiments on manganites [5], as well as to theoretical work on the many-electron case based
on the Holstein model [3, 16] and the Fröhlich model [19, 20]. Theoretical work on manganites
is discussed in [3–5], and a review of polaron theories can be found in [21].

This paper is organized as follows. In section 2, we introduce the spinless Holstein model.
In section 3, we outline the derivation of the general expression for the optical conductivity
involving the electronic spectral functions deduced in [17]. Numerical and analytical results
are discussed in section 4, and section 5 contains our conclusions.

2. Model

We consider the one-dimensional (1D) spinless Holstein model, describing fermions coupled to
dispersionless optical phonons. It provides a general framework to study polaron physics [22],
many-polaron effects [8] and quantum phase transitions [23–26], but is simple enough to permit
reliable investigations by analytical and numerical methods. A connection to the more general
Holstein–Hubbard model (see, e.g., [15]) can be made in the limit of large Hubbard-U in the
latter. Moreover, the Holstein double-exchange model for the manganites [3, 4, 27] reduces to
the present model for infinite Hund’s rule coupling and a ferromagnetic state.

Following [17], we write the Hamiltonian in the general form

H = η
∑

i

c†
i ci −

∑

i, j

Ci j c
†
i c j + ω0

∑

i

(b†
i bi + 1

2 ) (1)

where c†
i (ci ) and b†

i (bi ) create (annihilate) a spinless fermion (respectively a phonon) of
energy ω0 (h̄ = 1) at site i . The strength of the electron–phonon interaction is specified by the
dimensionless coupling constants λ = EP/2t (adiabatic regime, ω0/t � 1) and g2 = EP/ω0

(anti-adiabatic regime, ω0/t � 1), with EP denoting the atomic-limit (Ci j = 0 for i �= j in
equation (1)) polaron binding energy.

The definitions of η and the coefficients Ci j will depend on the type of approximation
used and hence on the parameter regime. In the WC case, in which we start with the original,
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untransformed Holstein Hamiltonian, we have

η = −μ, Cii = gω0(b
†
i + bi ), C〈i j〉 = t, (2)

where μ denotes the chemical potential. In contrast, in the SC regime, we use the Hamiltonian
after the Lang–Firsov transformation [28] with

η = −EP − μ, Cii = 0, C〈i j〉 = te−g(b†
i −bi −b†

j +b j ). (3)

The non-interacting (polaron) half-bandwidth in the SC regime is W̃ = We−g2
, with the 1D

free-fermion half-bandwidth W = 2t . Finally, the treatment of the IC case is based on a
modified Lang–Firsov transformation [17] defined by the unitary operator

U = e
∑

i g(γ c†
i ci +γ )(b†

i −bi ), (4)

which leads to a Hamiltonian of the form (1) with

η = −μ− EP[γ (2 − γ )+ 2γ (1 − γ )],
Cii = gω0(1 − γ )(b†

i + bi ), C〈i j〉 = te−γ g(b†
i −bi −b†

j +b j ).
(5)

The parameters γ and γ depend on the carrier concentration n, and on the variational parameter
R characterizing the delocalization of the charge carrier from the centre of the associated lattice
distortion. Explicitly, we have

γ = 2ne−1/R tanh
1

2R
, γ = tanh

1

2R
− γ, (6)

and R is then defined by the position of the minimum of the total energy per site in the first
(Hartree) approximation [17].

3. Theory

In this section we present our analytical results for the optical conductivity. We first derive a
general expression which allows us to calculate the real part of the optical conductivity from
the momentum and energy dependent one-electron spectral function A(k, ω). Approximations
for the spectral function in different coupling regimes have been obtained in [17], and the
basic formulae necessary for the computation of the conductivity are compiled in appendix A.
The calculations presented in [17] are based on the self-consistent treatment of the self-energy
equations in second-order perturbation theory. To describe the crossover from the SC to the
WC regime, we use the variational procedure outlined above.

Our approximation neglects vertex corrections due to direct fermion–fermion interaction,
which is also absent from the spinless Hamiltonian (1). Nevertheless, fermion–phonon and—at
finite carrier density—phonon-mediated, retarded fermion–fermion interaction effects enter via
the spectral functions [17]. For simplicity, we exclude from our discussion the quantum phase
transition from a Luttinger liquid to an insulating Peierls phase at half-filling [23, 25].

3.1. General expression for the optical conductivity

The current density operator for the 1D spinless Holstein model reads

ĵ = i
et

V

∑

〈g′,g〉
(g′ − g)c†

g′cg, (7)

where g′, g number the lattice sites, and a = |g′ − g| and V = Na are the lattice constant and
the volume, respectively.
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According to linear response theory [29], the frequency dependent complex conductivity
σ(ω) is determined by the Green function of the current density operators. In particular,

Re σ(ω) = − V

ω
Im GR

ĵ (ω), (8)

where

GR
ĵ (ω) =

∫ ∞

−∞
d(t − t ′)GR

ĵ (t − t ′)eiω(t−t ′) (9)

with the retarded Green function

GR
ĵ (t − t ′) = −i〈[ĵ (t), ĵ (t ′)]〉θ(t − t ′). (10)

In the notation of [30], the related Matsubara Green function takes the form

G ĵ (τ1, τ
′
1) = −〈Tτ ĵ (τ1)ĵ (τ

′
1)〉

=
(

et

N

)2 ∑

〈m1,m2〉

∑

〈m′
1,m

′
2〉
(m1 − m2)(m

′
1 − m ′

2)

× 〈Tτ c†
m1
(τ1)cm2

(τ1)c
†
m′

1
(τ ′

1)cm′
2
(τ ′

1)〉

=
(

et

N

)2 ∑

〈m1,m2〉

∑

〈m′
1,m

′
2〉
(m1 − m2)(m

′
1 − m ′

2)

× 〈Tτ cm2
(τ2)cm′

2
(τ ′

2)c
†
m′

1
(τ ′

1)c
†
m1
(τ1)〉|τ2=τ1−, τ ′

2=τ ′
1−, (11)

where mi ,m ′
i are integers labelling the sites of the 1D lattice. The two-particle Green function

G(2, 2′; 1, 1′) = 〈Tτ cm2
(τ2)cm′

2
(τ ′

2)c
†
m′

1
(τ ′

1)c
†
m1
(τ1)〉 (12)

for mutually independent fermions can be written in terms of one-particle Green functions [30].
Assuming 〈ĵ 〉 = 0 in the absence of an electric field, the part of the two-particle Green function
relevant for the evaluation of equation (11) reads [30]

G(2, 2′; 1, 1′) = −G(2, 1′)G(2′, 1)

= −〈Tτ cm2
(τ2)c

†
m′

1
(τ ′

1)〉〈Tτ cm′
2
(τ ′

2)c
†
m1
(τ1)〉. (13)

We use the Fourier transformation of the one-particle Green functions

G(2, 1′) = 1

N

∑

k

eik(m2−m′
1)

1

β

∑

ων

e−iων(τ2−τ ′
1)G(k, iων) (14)

with ων = (2ν + 1)π/β , k = 2πm/N (likewise for G(2′, 1)), and the spectral representation

G(k, iων) =
∫ ∞

−∞
dω′ A(k, ω′)

iων − ω′ , (15)

to obtain

G ĵ (iωn) =
∫ β

0
d(τ1 − τ ′

1)e
iωn(τ1−τ ′

1)G ĵ (τ1 − τ ′
1), (16)

where ωn = 2nπ/β . Using equations (12)–(15) to express the right-hand side (rhs) of
equation (11), the Fourier transformation (16) is evaluated by carrying out the summations
over mi , m ′

i , and the integration and subsequent summation over the Matsubara frequencies
ων [30]. We find

G ĵ (iωn) =
(

2et

N

)2 ∑

k

(sin k)2
∫ ∞

−∞
dω′

∫ ∞

−∞
dε ′ A(k, ω′)A(k, ε ′)

f (ω′)− f (ε ′)
ω′ − ε ′ + iωn

. (17)

4



J. Phys.: Condens. Matter 19 (2007) 236233 J Loos et al

Here f (x) = [exp(βx)+ 1]−1 is the Fermi function. Using Dirac’s identity

1

ω + ω′ − ε ′ + i0+ = P
ω + ω′ − ε ′ − iπδ(ω + ω′ − ε ′), (18)

the analytical continuation iωn 	→ ω + iδ gives in the limit δ → 0+

Im GR
ĵ (ω) = −π

(
2et

N

)2 ∑

k

(sin k)2
∫ ∞

−∞
dω′

∫ ∞

−∞
dε ′ A(k, ω′)A(k, ε ′)

× [ f (ω′)− f (ε ′)]δ(ω + ω′ − ε ′). (19)

In particular, for ω > 0 and T → 0, and introducing the Heaviside step function θ(x),

Im GR
ĵ (ω) = −π

(
2et

N

)2 ∑

k

(sin k)2
∫ 0

−∞
dω′ A(k, ω′)A(k, ω′ + ω)θ(ω′ + ω). (20)

The real part of σ(ω) for ω > 0, given by

σ reg(ω) = 4σ0

ω

1

N

∑

k

(sin k)2
∫ 0

−∞
dω′ A(k, ω′)A(k, ω + ω′)θ(ω + ω′), (21)

is determined by the overlap of the electronic spectral functions for energies ω′ < 0 (relative to
μ) and ω′ + ω > 0, respectively. Here we have defined σ0 = aπ(et)2.

The neglect of vertex corrections in the current–current response function based on
equation (13) leads to the factorization into spectral functions in equation (21), which is
equivalent to the exact D = ∞ result commonly used in dynamical mean-field theory
(DMFT) [31]. However, in contrast to the local approximation of DMFT, the spectral functions
used here have a non-trivial momentum dependence [17].

3.2. Limiting cases

3.2.1. Weak coupling. The explicit form of the WC electronic spectral function, calculated
according to equations (A.1)–(A.4), was determined in [17]. Taking into account the condition
|ω| < ω0 (|ω| > ω0) for the coherent (incoherent) part, and the explicit result (A.2) for the
coherent part Ac(k, ω), we find for the optical conductivity

σ reg(ω) = 4σ0

πω

∫ π

0
dk(sin k)2

×
[

zkθ(−(Ek − μ))θ(ω0 + Ek − μ)θ(Ek − μ+ ω − ω0)A
ic(k, Ek − μ+ ω)

+ zkθ(Ek − μ)θ(ω0 − (Ek − μ))θ(ω − (Ek − μ)− ω0)A
ic(k, Ek − μ− ω)

+
∫ 0

−∞
dω′ Aic(k, ω′)Aic(k, ω + ω′)θ(−ω′ − ω0)θ(ω + ω′ − ω0)

]
. (22)

For the discussion of equation (22) in section 4, we have to recall [17] that the WC
approximation of the incoherent one-electron spectral function Aic(k, ω′) is non-zero only for
ω′ ∈ (−ω0 − W − μ,−ω0) or ω′ ∈ (ω0, ω0 + W − μ). The last term in equation (22),
corresponding to transitions between these frequency intervals of the spectrum, is denoted in
figure 1 as D.

3.2.2. Intermediate coupling. Within the variational approach, the electronic spectral function
is given by equation (A.5) with g replaced by γ g and W̃ = We−γ 2g2

. The explicit expression

5
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0 0
E

0

0 0
E

0

0 0
E

0

E
k

E
k

(I)

(II)

(D)

Figure 1. Illustration of the transitions contributing to equation (22).

for �(k, ω) determining the polaronic spectral function can be found in [17]. Using the
definitions (A.6)–(A.9), we can write

∫ 0

−∞
dω′θ(ω + ω′)Ae(k, ω

′)Ae(k, ω
′ + ω) = A + B + C + D. (23)

In general all terms of equation (23) contribute to σ reg(ω). We find

[σ reg(ω)]A = 4σ0

π2ω
e−2(γ g)2

∑

s�1

(γ g)2s

s!
∫ π

0
dk(sin k)2zk

×
[

zk1

|∂k1 Ek1 |
θ(Ek + η)θ(ω0 − (Ek + η))θ(−Ek1 − η)θ(ω0 + Ek1 + η)

+ zk2

|∂k2 Ek2 |
θ(−Ek − η)θ(ω0 + Ek + η)θ(Ek2 + η)θ(ω0 − (Ek2 + η))

]

+ 2σ0

ωπ2
e−2(γ g)2

∑

s�1

2s(γ g)2s

s! (1 − 21−s)

∫ π

0
dk zk

zk′

|∂k′ Ek′ |
× θ(−Ek − η)θ(ω0 + Ek + η)θ(Ek′ + η)θ(ω0 − (Ek′ + η)), (24)

where
[

zk

|∂k Ek |
]−1

=
∣∣∣∣∣W̃ sin k

{
1 − 2

π
cos k

∑

s�1

(γ g)2s

s! P
∫ W̃

−W̃

dξ√
1 − (ξ/W̃ )2

×
[

θ(ξ + η)

Ek − sω0 − ξ
+ θ(−ξ − η)

Ek + sω0 − ξ

]}
+ 2

π
γ (1 − γ )EP sin k

× P
∫ W̃

−W̃

dξ√
1 − (ξ/W̃ )2

[
θ(ξ + η)

Ek − ω0 − ξ
− θ(−ξ − η)

Ek + ω0 − ξ

] ∣∣∣∣∣. (25)

Here k1, k2 ∈ (0, π) are determined by the conditions Ek1 = Ek − (ω − sω0) and Ek2 =
Ek + (ω − sω0), whereas k ′ > kF is given as the solution of Ek′ = Ek + (ω − sω0).

For the other contributions to equation (23), we have

B = e−(γ g)2 zk Aic
e (k, ω + Ek + η)θ(ω + Ek + η)θ(−Ek − η)θ(ω0 + Ek + η)

+ e−(γ g)2
∑

s�1

(γ g)2s

s!
1

π

∫ π

0
dk ′zk′ Aic

e (k, ω + Ek′ + η − sω0)

× θ(ω + Ek′ + η − sω0)θ(−Ek′ − η)θ(Ek′ + η + ω0), (26)

6
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C = e−(γ g)2 zk Aic
e (k, Ek + η − ω)θ(ω − Ek − η)θ(Ek + η)θ(ω0 − Ek − η)

+ e−(γ g)2
∑

s�1

(γ g)2s

s!
1

π

∫ π

0
dk ′zk′ Aic

e (k, Ek′ + η + sω0 − ω)

× θ(ω − Ek′ − η − sω0)θ(Ek′ + η)θ(ω0 − Ek′ − η), (27)

and

D =
∫ 0

−∞
dω′ Aic

e (k, ω
′)Aic

e (k, ω + ω′)θ(ω + ω′), (28)

so that

[σ reg(ω)]B+C+D = 4σ0

πω

∫ π

0
dk(sin k)2(B + C + D). (29)

The parts of the electronic spectral function denoted by Aic
e (k, ω

′), defined in equation (A.8),
are determined by the incoherent parts of the polaronic spectral function.

3.2.3. Strong coupling. For g2 � 1, small polarons are the correct fermionic quasiparticles,
and the calculations corresponding to equations (A.1)–(A.4) are done using the small-polaron
Hamiltonian defined by the coefficients (3) (see [17] for explicit results). In this regime,
the zeroth-order small-polaron approximation—with the spectrum consisting only of coherent
states in the polaron band—is applicable and the polaronic spectral weights zk ≈ 1 [17].
Consequently, it is sufficient to keep only the term A, and SC expressions corresponding to
equations (24) and (25) can be obtained by setting γ = 1.

The rather complicated explicit formulae for the optical conductivity presented above are
visualized in figures 1 and 2 for the WC and the SC/IC cases, respectively. In particular, these
pictures show that non-zero values of σ reg(ω) are restricted to ω > ω0. The existence of such
a threshold for the optical conductivity at T = 0 was already recognized in [20] on the basis of
WC calculations in the framework of the continuous polaron model.

4. Results

We now come to a discussion of numerical results obtained from the analytical expressions
derived in section 3, which will be compared to exact data for one electron. It is instructive to
first consider the kinetic energy and the Drude weight, related to σ reg(ω) by the f-sum rule.

4.1. Integral quantities

In a tight-binding system with the kinetic energy operator

T̂ = −t
∑

〈i, j〉
c†

i c j (30)

and the current density operator (7), it follows that [32, 33]

−e2aεkin = 1

π

∫ ∞

−∞
dω σ(ω) = 2

π

∫ ∞

0
dωRe σ(ω), (31)

by symmetry of σ(ω). Here, εkin = 〈T̂ 〉/N represents the kinetic energy per lattice site.
For ω > 0 and T = 0, the electron–phonon interaction implied in the Holstein model

considered here gives a non-zero Re σ(ω) only if ω > ω0. At ω = 0, Re σ(ω) has a singularity
to be deduced in appendix B. Writing

Re σ(ω) = Dδ(ω)+ σ reg(ω), (32)

7
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Figure 2. Transitions contributing to equations (24), (26) and (27). Equation (28) corresponds to
figure 1(D) with −μ replaced by η.

where D is the so-called Drude weight, and defining Sreg ≡ Sreg(∞) with

Sreg(ω) =
∫ ω

0
dω′σ reg(ω′), (33)

the f-sum rule (31) takes the form

−e2aεkin = 1

π
D + 2

π
Sreg. (34)

The kinetic energy may be determined independently of the rhs of equation (34) from the
electronic spectral function as [34]

εkin = 1

N

∑

k

∫ 0

−∞
dω εk A(k, ω), εk = −2t cos k. (35)

In the case of one electron in a lattice with N sites (i.e., with carrier concentration
n = 1/N), εkin is equal to the kinetic energy Ekin of one electron divided by N . To obtain non-
zero results, both sides of equation (34) are multiplied by N before taking the limit N → ∞.
Accordingly, using the spectral representation at T = 0, we have for ω > 0

σ reg(ω) = aπ

ω

∑

Em>E0

|〈ψm |ĵ |ψ0〉|2 δ[ω − (Em − E0)] (36)

with the current operator ĵ = −iet
∑

i (c
†
i ci+1 − c†

i+1ci ) for a single electron. Here |ψm〉
denotes the mth excited state with energy Em . In comparison to equations (7), (8) a factor 1/N
is omitted in equation (36).

8
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Figure 3. Numerical results for the kinetic energy Ekin (——), the Drude weight D (- - - -), and the
integrated spectral weight Sreg (— · —, equation (33)), for one electron as a function of electron–
phonon coupling strength. Here (a) ω0/t = 0.4 and (b) ω0/t = 4.

According to Kohn’s formula, the Drude weight of the Holstein model with one electron
can be calculated from the effective mass m∗ as (Ek is the polaron band dispersion) [35]

D = e2πa ∂2
k Ek

∣∣
k=0

= e2πa
1

m∗ . (37)

The evaluation of D via the f-sum rule, and the determination of m∗, are independent
computations, so that equation (37) may be used to validate the numerics.

4.1.1. One electron. We adopt the basis construction of [36], which allows for the calculation
of results that are variational in the thermodynamic limit, and find that the f-sum rule is fulfilled
to at least six digits for the parameters shown. For spectral properties a Chebyshev expansion
method is used [37].

The dependence of Ekin, Sreg and D on the electron–phonon coupling strength reflects
the well-known crossover from a large polaron at weak coupling to a small polaron at strong
coupling [38]. As expected, the results in figure 3 reveal a significant dependence on the
adiabaticity ratioω0/t . The adiabatic regime (figure 3(a)) is characterized by rather pronounced
decrease of Ekin and D (increase of m∗) in the vicinity of the point λ = 1 near which the
crossover occurs, which is compensated by an increase of Sreg due to enhanced incoherent
scattering. In contrast, in the non-adiabatic regime (figure 3(b)), these changes occur over a
much larger range of the relevant coupling constant g2.

4.1.2. Many electrons. Equation (35) turns out to be numerically problematic in the SC
regime, and εkin is instead calculated from equation (B.17). An approximation for D is given
by equation (B.10).

To test the reliability of the spectral functions obtained from the analytical approach we
compare in table 1 the analytical kinetic energy εkin for different parameter sets to numerical
data from quantum Monte Carlo (QMC) simulations [7] and exact diagonalization (ED) [16].
We restrict ourselves to the adiabatic regime since the analytical approach generally works
better for ω0/t � 1 [17]. The agreement is satisfactory in all cases, with the deviations of
the analytical results for EP/t = 2 originating to some degree in the missing spectral weight in
A(k, ω) (see below). The SC approach slightly underestimates the kinetic energy for EP/t = 4,
a coupling which does not fall into the true SC regime (see also figure 5(c)).

9
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Figure 4. Analytical results for the kinetic energy εkin (——), the Drude weight D (- - - -), and
the integrated spectral weight Sreg (— · —) as a function of band filling n. Here EP/t = 0.1 and
ω0/t = 0.4 (◦) and ω0/t = 4 (�) respectively.

Table 1. Analytical results for the kinetic energy −εkin/t for ω0/t = 0.4, QMC data for N = 16,
βt = 10,�τ = 0.05 [7], and ED data for N = 10 [16].

Parameters Analytical QMC ED

EP/t = 0.1, n = 0.1 0.202 (WC) 0.211 (IC) 0.190 0.1986
EP/t = 0.1, n = 0.3 0.509 (WC) 0.518 (IC) 0.504 0.5208
EP/t = 0.1, n = 0.4 0.600 (WC), 0.609 (IC) 0.596 0.5824
EP/t = 2.0, n = 0.1 0.155 (IC) 0.136 ± 0.002 0.1517
EP/t = 2.0, n = 0.3 0.382 (IC) 0.36 ± 0.01 0.4070
EP/t = 2.0, n = 0.4 0.397 (IC) 0.43 ± 0.02 0.4531
EP/t = 4.0, n = 0.4 0.13 (SC) 0.19 ± 0.01 0.2318a

a Not fully converged with respect to the number of phonons M = 25.

Figure 4 shows the dependence of εkin, D, and Sreg on carrier density for EP/t = 0.1.
Whereas the kinetic energy and the Drude weight are almost identical in the adiabatic and
non-adiabatic regime, the regular part Sreg is substantially larger for ω0/t < 1 owing to
enhanced incoherent scattering of carriers by phonons, as is also observed in the one-electron
case (figure 3(a)). The weak coupling leads to very small Sreg (note the different scale used for
Sreg) and hence requires—via the f-sum rule—that −εkin/t ≈ tD/σ0. A comparison of Sreg to
exact IC results [16] reveals similar deviations as for εkin.

The approximations for the Drude weight D derived in appendix B yield reliable results
in the WC and SC cases, whereas the dependence of D on EP for intermediate coupling is not
properly described. Alternatively, an estimate for D may be obtained from the sum rule, but
will be affected by the deviations of εkin and Sreg from exact results.

4.2. Optical response

4.2.1. One electron. Although the optical conductivity for one electron has been discussed
before [38], we shall begin with this case as it provides a framework for the finite-density case,
and another test for the analytical theory. We focus on the adiabatic regime ω0/t < 1 relevant
for many polaronic materials.

Figure 5 shows numerical and analytical results for σ reg(ω) for ω0/t = 0.4 and three
different values of EP. In order to compare with the one-electron case, we have chosen n = 0.1

10
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Figure 5. Numerical one-electron results (- - - -, red) for the regular part of the optical conductivity
σ reg(ω) and the integrated spectral weight Sreg(ω), and analytical results (——, black, scaled to give
the same Sreg) for n = 0.1 from the IC approximation with (a) R = 2.4, (b) R = 2.1, (c) R = 0.1.
Here ω0/t = 0.4 and (a) EP/t = 0.1, (b) EP/t = 2, and (c) EP/t = 4. The inset in (a) compares
the WC analytical result for n = 0.1 (——, black) to that obtained for n → 0 (- - - -, blue, see text),
both rescaled to Sreg for one electron. Panel (c) includes the small-polaron result of [39] (— · —,
blue).

in the analytical approach, and scaled the results to yield the exact one-electron value for Sreg.
The dependence of σ reg(ω) and Sreg on n will be discussed below.
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As anticipated from the analytical results (cf equations (22) and (24)), there exists a
minimal absorption energy (absorption threshold) ω = ω0. Another striking feature is the
change from an asymmetric spectrum in the large-polaron regime to a (more) symmetric
spectrum in the small-polaron regime also observed experimentally [5].

Starting with weak coupling EP = 0.1 in figure 5(a), we find a pronounced absorption
signal near ω = ω0, followed by a continuous decrease. The analytical results from the IC
approximation reproduce the main features (notice the good agreement for Sreg(ω)), with the
sharp low-energy peaks smeared out. As illustrated by the WC results in the inset (in good
agreement with the IC results), this smearing depends on the number of k-values used in the
integration (N = 31 and 801, respectively). The inset also contains analytical results for
μ → E+

0 , corresponding to the one-electron case [18], for which a non-zero WC result is
obtained by using the zero-density spectral function in equation (22). Obviously, small peaks
in σ reg(ω) are further washed out in this limit. The sharp peaks in the exact numerical results
are due to the use of a finite number of poles in equation (36).

Turning to the IC results (EP/t = 2, close to the critical coupling for the small-polaron
crossover) depicted in figure 5(b), we find low-energy peaks split off from the high-energy part
and separated by ω0. Besides, the long high-energy tail of both the exact and analytical curves
is reminiscent of experimental data on manganites [5] and also TiO2 [40], and its occurrence in
the IC regime points toward the inadequacy of standard small-polaron theory for such materials.

Finally, for EP/t = 4 (figure 5(c)), we find a maximum close to that of the small-polaron
result [39] which peaks at 2EP and is included for reference, with the parameter σ 0 chosen so
as to get the same Sreg. For technical reasons, the optical conductivity in the SC regime (given
analytically by a sum of δ-peaks) is calculated using an artificial broadening (see many-electron
case).

The exact numerical results, however, reveal that the parameters chosen do not fall into
the true small-polaron regime, as indicated by a slight asymmetry, a maximum clearly below
2EP, and three low-energy peaks (not related to finite-size effects) which diminish with
increasing EP. The latter originate from transitions between the (dispersive) coherent band
and dispersionless phonon satellites (cf figure 9(b) of [17]), and are absent in the analytical
results, probably due to an overestimation of band-narrowing in the adiabatic regime. The
possibility of such overestimation by the Lang–Firsov small-polaron theory in the adiabatic
case was qualitatively illustrated for the two-site model in [41], and the analytical results of
figure 5(c) are expected in the SC (small-polaron) regime.

Figure 6 shows σ reg(ω) at weak coupling in the non-adiabatic regime, taking ω0/t = 4. As
multi-phonon excitations have small weight due to g2 � 1, the absorption is virtually restricted
to the interval [ω0, ω0 + 2W ]. Here the analytical WC approach—restricted to one-phonon
excitations, see equation (22)—yields even better agreement than in figure 5(a).

Overall, the analytical approach is capable of reproducing the main features of the optical
conductivity in the low-density regime, including the increase of the frequency range for
absorption (figure 5). Furthermore, in accordance with figure 3, Sreg is small at weak coupling,
takes on a maximum in the IC regime, and decreases again due to the suppression of εkin (via
the sum rule) at strong coupling.

4.2.2. Many electrons. There are some issues concerning the analytical results shown
here which deserve attention. First, we pointed out in [17] that the total spectral weight
w = ∫

dk
∫

dωA(k, ω) � 1 contained in the spectral function (i.e., its norm) provides a
first indication for the quality of the analytical approximation for a given set of parameters.

The IC approach reproduces the WC (SC) approximation in the WC (SC) regime [17].
In the vicinity of these limits, it yields results very similar to the WC/SC approximation, with

12
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Figure 6. Numerical results for σ reg(ω) for one electron (- - - -, red), and analytical results (——,
black) for n = 0.1 (scaled to the same Sreg) from the WC approximation. Here ω0/t = 4 and
EP/t = 0.1. Also shown is Sreg(ω).

w � 1. In the true IC regime (λ = EP/2t ≈ 1 or g2 = EP/ω0 ≈ 1), the norm w becomes
as small as 0.7 in the worst case considered (for the parameters of figure 11(a)), with w also
depending on the radius R, whose ‘optimal’ value is determined by minimizing the energy
within the Hartree approach. Despite these deviations, observables such as the kinetic energy
(see table 1) or the total energy (see figure 13(a) in [17]) are in satisfactory agreement with exact
results. Moreover, the optical conductivity—calculated from the spectral function—is mainly
determined by states near the Fermi level, so that missing high-energy incoherent processes are
irrelevant, and w < 1 does not necessarily lead to poor results.

For some parameters, the spectral functions obtained from the IC approach exhibits small
regions in the (k, ω) plane where A(k, ω) < 0 [17]. To calculate the optical conductivity, we
have replaced such values by zero.

Finally, in the SC regime, an artificial ‘softening’ proportional to the energy resolution
is imposed on the θ functions in equation (24) which affects the integrated weight Sreg.
Nevertheless, a consistent value for Sreg, and hence the normalization of σ reg(ω), can be
obtained using equation (B.16).

4.2.3. Weak coupling. We begin with the density dependence of σ reg(ω). Figure 7 shows
results for EP/t = 0.1, and we first consider the adiabatic case ω0/t = 0.4 in panel (a). The
spectra exhibit several non-trivial features. Apart from the absorption threshold at ω0, we find
an asymmetric peak exhibiting small but noticeable wiggles which extend over an interval ω0

centred at the maximum, and diminish with increasing n.
The origins of this feature are transitions of type II, as can be seen by separating the

contributions I and II to equation (22), and looking at the corresponding spectral function
A(k, ω) shown in figure 8.

Non-zero contributions to the second term in equation (22) exist for ω ∈ (ωmin, ωmax). For
a given ω from this interval, the range of k-values contributing to σ reg(ω) is defined by the
condition Aic(k, Ek −μ−ω) > 0, with Ek −μ > 0. The absorption starts at ωmin = ω0, with
a single k-value kmin = kF. The upper cut-off for the adiabatic case (figure 7(a)) is given as
ωmax = 2ω0 + | − W −μ|, corresponding to a single value kmax defined by Ekmax −μ = ω0. In
the anti-adiabatic case (figure 7(b)), for which the entire coherent band lies inside the interval
(−ω0, ω0), ωmax = ω0 + 2W corresponding to kmax = π with the highest energy W − μ.
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Figure 7. Analytical results for σ reg(ω) from the WC approximation for n = 0.1 (——), n = 0.3
(- - - -) and n = 0.4 (— · —). Here EP/t = 0.1, (a) ω0/t = 0.4 and (b) ω0/t = 4. The
corresponding results for Sreg are given in figure 4.

The shape of the absorption curve in the interval (ωmin, ωmax) depends on the k-interval
contributing to the transition II for fixed ω, and the corresponding values of Aic(k, Ek −μ−ω).
For the anti-adiabatic case, figure 7(b) shows sharp maxima at the n-dependent positions
ω1 = ω0 + |−W − μ|. This feature may be related to the increase of the range of contributing
k-values, beginning with the single value k = kF for ω = ω0, up to the interval (kF, k1) for ω1,
with k1 determined by Ek1 − μ = |−W − μ|.

For n = 0.1, there is very little weight contained in incoherent states below μ (figure 8(a)).
In fact, there exists only a single, small and narrow peak with negligible dispersion, and
transitions from the latter to a coherent state can occur for ω0 � ω � 2ω0, i.e., for final states
between Ek −μ = 0 and the upper edge of the coherent band Ek −μ = ω0. The wiggles, more
pronounced for smaller numbers of k-values, result from transitions to the discrete δ-peaks of
the coherent spectrum.

Above ω = 2ω0, for n = 0.1, the transitions of type II fall off quickly with increasing ω
and go to zero for ω > 2ω0 + |−W − μ| ≈ 0.87. In contrast, for larger n, the energy interval
of incoherent states below the Fermi level |−W −μ| (and the weight contained in the latter) is
significantly larger, yielding the cut-offs of ω ≈ 1.6 and ω ≈ 2.15. The high-frequency optical
response is much smoother since the incoherent parts of the spectral function are broadened
proportional to EP, and Sreg(ω) increases in accordance with figure 4.
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Figure 8. Coherent (Ac, - - - -) and incoherent (Aic, ——) parts of the WC electronic spectral
function for ω0/t = 0.4 and EP/t = 0.1 [17].

Finally, the long high-energy tail in σ reg(ω) seen in figure 7(a) for all n is due to incoherent
excitations of type D (figure 1), which have a maximum energy of 2(W + ω0) (within the WC
approximation).

4.2.4. Strong coupling. Figure 2 illustrates the contributions to σ reg(ω) in the SC regime,
where the polaron band lies entirely in the interval (−ω0, ω0). Equations (A.1)–(A.3) represent
transitions between the states in the polaron band accompanied by multi-phonon processes. The
processes (B) and (C), corresponding to transitions between the incoherent polaron spectrum
and the polaron band states, again involving multiple phonons, are expected to become
important for intermediate coupling.

Examining the analytical expressions, the most important processes in the true SC limit
(λ, g � 1) appear to be those of type (A3), with the dominating (with respect to e−g2

)
contribution to σ reg(ω) given by equation (B.14). In this case, σ reg(ω) consists of sharp peaks
at ω = sω0 with heights modulated by the Poisson distribution with parameter 2g2, as may be
seen in figure 5(c). The maximum of the conductivity lies near the maximum of the Poisson
distribution determined by s = 2g2 = 2EP/ω0.

The peak heights in the anti-adiabatic SC case (g2 = 2) shown in figure 9 can
be understood by evaluating the relative weights in front of the integral on the rhs of
equation (B.14), yielding 1, 1, 8/9 for s = 1, 2, 3, respectively.

The picture of the optical conductivity implied by our findings agrees with results obtained
previously in the framework of small-polaron theory at T = 0 [13, 42]. The separated peaks
may be smeared out by means of an additional ‘smoothing mechanism’ [42] or due to limited
experimental resolution. The evolution of the small-polaron absorption spectrum towards a
smooth function due to damping and finite temperature effects was considered in [43], and
Emin [39] has presented the absorption spectrum in the form of a Gaussian centred at 2EP,
assuming the broadening of the energy levels of the localized polaron states.

4.2.5. Crossover from weak to strong coupling. Figure 10 illustrates the crossover from
weak to intermediate to strong coupling for a fixed density n = 0.4 in the adiabatic regime
ω0/t = 0.4 within the IC/SC approach. The corresponding spectral functions can be found
in figure 14 of [17], and we use the same values of the parameter R which decreases with
increasing EP reflecting a decrease of the polaron size.
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Figure 9. Analytical results for σ reg(ω) (——) and Sreg(ω) (- - - -) from the SC approximation.
Here ω0/t = 4, EP/t = 8 and n = 0.4.

The position of the maximum in σ reg(ω) changes significantly as a function of EP. For
weak coupling, it is located just above the absorption threshold at ω = ω0 (figure 10(a)),
whereas for EP/t = 2 it lies near 1.5ω0. Nevertheless, the frequency range for absorption in
panels (a) and (b) is very similar. For EP/t = 4, similarly to the low-density case shown
in figure 5(c), σ reg(ω) peaks near the small-polaron value 2EP. The analytical approach
overestimates the band narrowing, yielding SC behaviour even for a value EP/t = 4 lying
at the border to the SC region. Since for this value of EP the IC and SC approximations yield
virtually identical results, we have used the SC approximation to obtain a consistent value of
Sreg. The similarity of the SC results for n = 0.1 in figure 5(c) and n = 0.4 in figure 10(c)
is due to the rather weak density dependence of our analytical results pointed out before in the
case of the spectral function [17].

The evolution of Sreg with increasing EP is similar to that observed in the one-electron case
(figure 3(a)), with a maximum in the IC regime. Whereas for weak coupling transport is mainly
coherent (as reflected by a large Drude weight tD/σ0 ≈ 0.61 � t Sreg/σ0), Sreg increases
noticeably for EP/t = 2 owing to enhanced incoherent scattering. For strong coupling, since
D → 0, the reduced kinetic energy suppresses Sreg via the f-sum rule.

4.2.6. Density dependence at intermediate coupling. We finally examine the density
dependence of the optical response in the IC regime. To make a connection with previous
work [16], we take ω0/t = 0.4 and EP/t = 2. Figure 11 depicts results for σ reg(ω) for
n = 0.1 and 0.3, whereas the case n = 0.4 is reported in figure 10(b).

The low-density case n = 0.1 has already been shown in figure 5(b), and the results are
presented without rescaling in figure 11(a) for reference. Compared to n = 0.3 (figure 11(b)),
we observe a transfer of spectral weight from high to low frequencies, causing a strong
reduction of the broad high-energy hump. This trend continues upon increasing n even further,
as can be seen from figure 10(b). Besides, the continuous increase of Sreg with increasing n is
similar to the WC case depicted in figure 4(a).

These features of the optical conductivity suggest that the increase of the kinetic energy
with n, as shown in table 1, has a more profound origin than the mere increase of the charge
carrier density. In this connection, it is necessary to discuss the dependence of the ‘optimal’
polaron radius R on density n. The values reported in the caption of figures 10 and 11 illustrate
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Figure 10. Analytical results for σ reg(ω) (——) and Sreg(ω) (- - - -) from the IC ((a), (b)) and
SC (c) approximation, respectively. Here ω0/t = 0.4, n = 0.4, and (a) EP/t = 0.1 (R = 1.5),
(b) EP/t = 2 (R = 1.3) and (c) EP/t = 4.

that, within our variational approach, R decreases with increasing carrier density, i.e., R = 2.1
for n = 0.1, R = 1.5 for n = 0.3, and R = 1.3 for n = 0.4. This seems to be at odds with
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Figure 11. Analytical results for σ reg(ω) (——) and Sreg(ω) (- - - -) from the IC approximation.
Here ω0/t = 0.4, EP/t = 2.0, (a) n = 0.1 (R = 2.1) and (b) n = 0.3 (R = 1.5).

the crossover from polaronic behaviour at small n to metal-like behaviour at larger n observed
numerically [7, 8], since a decrease of R with increasing EP at fixed n generally enhances the
polaronic character of the spectra [17].

Whereas the dependence of εkin on the coupling strength at fixed n may be interpreted
as the crossover between the small-polaron and large-polaron regime, the concentration
dependence of εkin seems to be more involved [7, 8]. Indeed, according to the variational
treatment of the IC case, the concentration dependence of the kinetic energy and optical
conductivity is to be explained by the n-dependence of the parameters γ, γ , η defined by
equations (5) and (6). These parameters are determined, using the variational variables R, by
the energy balance of the Hartree energy of polarons and the energy of the lattice deformation
background [17], which at λ = 1 may be quite significant. Although the optimal R increases
with decreasing n, this energy balance leads to an increase of kinetic energy with increasing
n, as the resulting increase of the lattice deformation is sufficient to enhance the mobility of
charge carriers.

This picture may be supplemented and improved by a more detailed insight provided by
the electron–lattice and electron–electron correlations calculated numerically in [8]. According
to these results, the increase of the carrier concentration is accompanied by the short-
range development of the charge-density wave, which is connected with the spreading of
the inhomogeneous lattice deformation about the centre of the polaron. Consequently, the
analytical calculations based on the Hartree energy—taking into account only the averaged
energy of the lattice deformation background—cannot describe these features revealed by
numerical calculations. Nevertheless, the optical spectra turn out to reproduce the main features
found numerically [8, 16], and the dependence of the total energy on n is in good agreement
with exact data [8].

5. Discussion and conclusions

The results of section 4.2 suggest that the analytical approach captures the main features of
polaronic systems with finite carrier density. Therefore, it is interesting to relate our findings to
the polaronic excitations observed in manganites, for which no general theory is available.
To be more specific, we consider results for thin films of La2/3Sr1/3MnO3 (LSMO) and
La2/3Ca1/3MnO3 (LCMO) containing a characteristic mid-infrared peak usually assigned to
polarons [5]. The shape and position of this peak differs substantially for the two materials,
and has been interpreted in terms of large and small polarons, respectively [5, 44]. Apart from
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the shift of the maximum in σ reg(ω) to higher energies when going from LSMO to LCMO,
the peak is highly asymmetric in LSMO—with a sharp onset just below the maximum and a
high-energy tail—and much more symmetric in LCMO.

In small-polaron theory, the maximum in σ reg(ω) occurs at 2EP [40], so that experiments
can in principle be used to determine EP. However, for small-polaron theory to be applicable,
the resulting value has to be consistent with the high-temperature activation energy of the
dc conductivity, i.e., 4Ea = EP [40]. Experimentally, it turns out that this is usually not
the case, indicating that small-polaron theory is invalid. This problem has been pointed out
in [3–5], and a many-electron approach valid at intermediate coupling was proposed [3, 27].
The basic assumptions are that perovskite LSMO falls into the WC regime, whereas LCMO
is characterized by intermediate to strong coupling, in accordance with the Curie temperatures
TC ≈ 370 K respectively TC ≈ 270 K [27], and that the polaronic character of quasiparticles is
enhanced in thin films [3]. Hartinger et al [5] compare various theories to their data, concluding
that none is able to satisfactorily explain the lineshape of the polaron peak.

Based on the results of our simple analytical theory, we can make the following remarks.
The change of shape from asymmetric to symmetric and the position of the maximum is
observed when comparing the WC and IC/SC regimes. In particular, the WC approach
features a sharp onset and a long high-energy tail, whereas the IC/SC results are reminiscent
of the Poisson distribution of phonons. These main features can already be observed in our
exact one-electron results in figure 5. Apart from setting the order of magnitude of σ reg(ω),
the many-polaron effects discussed above are of minor importance for weak coupling (as
appropriate for LSMO), but renormalize polaronic features toward ‘metallic’ (or more WC-
like) behaviour in the IC regime [7]. Although polaron effects are enhanced in thin films as
used in [5], the discrepancy between EP as deduced from σ reg(ω) and Ea for LCMO in [5]
suggests that the sample lies near (TC ≈ 240 K) but not in the SC regime. The true SC case
seems to be realized in the layered manganite La1.2Sr1.8Mn2O7, for which angular-resolved
photoemission spectra [45] suggest the existence of small polarons even in the ferromagnetic
state [3, 46].

The present approach correctly predicts coherent states at the Fermi level giving rise to
a Drude response, and reproduces standard small-polaron results in the SC limit. This is
in contrast to the analytical treatment of the Holstein double-exchange model in [27], which
includes the coupling of local and itinerant spins in the manganites. The WC theory for a gas
of polarons proposed in [19] may in principle explain the optical conductivity of LSMO, but
it is not clear why long-range electron–phonon interaction is not screened in a dense metallic
system. Exact results for the Fröhlich model with one electron have been given in [47]. A model
of optical absorption based on transitions between ground and excited mixed polaron states,
formed by the hybridization of the narrow small-polaron band, and the wide large-polaron band
was presented in [42, 48]. However, this model deals with a number of constants, not explicitly
connected with the parameters of the Holstein Hamiltonian, which are to be determined by
fitting the experimental absorption curves. Besides, it is not clear how the crossover from
the SC to the WC case and the optical absorption in the WC regime can be described in this
framework.

To conclude, we have developed an analytical theory for the optical conductivity of finite-
density polaronic systems, based on previous work on the single-particle spectral function. The
spectra are surprisingly rich and in satisfactory agreement with exact results. Together with
previous numerical results [16], the present work provides a better understanding of the optical
conductivity of dense systems with large or small polarons. Finally, it can explain some of the
generic polaronic features observed in the manganites, but our electron–phonon model is too
simple to make quantitative predictions.
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Appendix A

The fermion spectral function (of electrons or polarons) can be written as

A(k, ω) = − 1

π

Im�(k, ω)

[ω − (ξk + η)− Re�(k, ω)]2 + [Im�(k, ω)]2
, (A.1)

with the fermion self-energy �(k, ω), and the free band dispersion of electrons (polarons)
ξk = −W cos k (ξk = −W̃ cos k).

For the Hamiltonian (1), the coherent part of the spectrum, Ac(k, ω)—characterized by
Im�(k, ω) = 0—is non-zero for |ω| < ω0. In this frequency interval,

Ac(k, ω) = zkδ[ω − (Ek + η)], (A.2)

where Ek is the solution of the equation

Ek = ξk + Re�(k, Ek + η), (A.3)

and

z−1
k = ∣∣1 − [∂ωRe�(k, ω)]ω=Ek +η

∣∣ . (A.4)

Accordingly, the incoherent part of the spectrum, denoted as Aic(k, ω), is non-zero for |ω| > ω0

and can be calculated according to equation (A.1).
The optical conductivity is determined by the electronic spectral function Ae(k, ω).

However, in the SC case, the correct fermionic quasiparticles are small polarons, and Ae(k, ω)
has to be expressed in terms of the polaronic spectral function Ap(k, ω) via [17]

Ae(k, ω) = e−g2
Ap(k, ω)+ e−g2 1

N

∑

s�1

(g2)s

s!
×

∑

k′

[
Ap(k

′, ω − sω0)θ(ω − sω0)+ Ap(k
′, ω + sω0)θ(−ω − sω0)

]
. (A.5)

For the numerical evaluation of equation (21), we define

A<e (k, ω < 0) = e−g2
zkδ[ω − (Ek + η)]θ(ω0 + ω)+ e−g2

∑

s�1

g2s

s!
1

N

×
∑

k′
zk′δ[ω + sω0 − (Ek′ + η)]θ(−ω− sω0)θ [ω + (s + 1)ω0] (A.6)

and

A>e (k, ω > 0) = e−g2
zkδ[ω − (Ek + η)]θ(ω0 − ω)+ e−g2

∑

s�1

g2s

s!
1

N

×
∑

k′
zk′δ[ω − sω0 − (Ek′ + η)]θ(ω− sω0)θ [(s + 1)ω0 − ω], (A.7)
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as well as

Aic
e (k, ω ≷ 0) = e−g2

Aic
p (k, ω)θ(±ω − ω0)+ e−g2

∑

s�1

g2s

s!
1

N

×
∑

k′
Aic

p (k
′, ω ∓ sω0)θ [±ω − (s + 1)ω0]. (A.8)

Equations (A.5)–(A.8) for the SC case are formally the same in the IC case, with g replaced
by γ g throughout.

The contributions to the integral in equation (23) are then given by

A =
∫ 0

−∞
dω′θ(ω + ω′)A<e (k, ω

′)A>e (k, ω
′ + ω) ,

B =
∫ 0

−∞
dω′θ(ω + ω′)A<e (k, ω

′)Aic
e (k, ω

′ + ω) ,

C =
∫ 0

−∞
dω′θ(ω + ω′)Aic

e (k, ω
′)A>e (k, ω

′ + ω) ,

D =
∫ 0

−∞
dω′θ(ω + ω′)Aic

e (k, ω
′)Aic

e (k, ω
′ + ω). (A.9)

Appendix B

The Drude formula for the low-frequency conductivity,

Re σ(ω) = D
π

τ

1 + (ωτ)2
, (B.1)

gives at ω = 0 for the dc conductivity

σ(0) = Dτ/π. (B.2)

Here τ denotes the relaxation time. In the limit 1/τ → 0, we obtain

Re σ(ω) = Dδ(ω). (B.3)

The standard way to deduce the conductivity at ω = 0 using the Kubo formula is to take
the limit ω → 0 of Re σ(ω) calculated for ω > 0 [40]. However, equation (21) yields zero
for 0 < ω < ω0. To derive the Drude-like singularity (B.3) for the formulation of the f-sum
rule, we shall start with a low but non-zero temperature T . Moreover, the spectral function in
equation (21) is assumed to have a finite width—caused by a very weak additional scattering
mechanism—leading to

A(k, ω′) = κzk

π

�

[ω′ − (Ek + η)]2 +�2
, (B.4)

where � = (2τ )−1. In the WC approach, κ = 1, η = −μ, whereas in the IC/SC approach
κ = exp(−g2γ 2), and η is given by equations (3) and (5), respectively.

After substitution of equation (20) into equation (8), the limit ω → 0 gives

lim
ω→0

Reσ(ω) = σ(0) = −4σ0
1

N

∑

k

(sin k)2
∫ ∞

−∞
dω′[A(k, ω′)]2 dω′ f (ω′). (B.5)

The subsequent limit T → 0 is taken using [dω′ f (ω′)]T =0 = −δ(ω′), which after substitution
of equation (B.4) into equation (B.5) yields

lim
T →0

σ(0) = 4κ2σ0

π2

1

N

∑

k

(sin k)2z2
k

�2

[(Ek + η)2 +�2]2
. (B.6)
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Converting the sum over k into an integral over Ek , we obtain

σ(0) = 4κ2σ0

π3

∫

{Ek}
dEk(sin k)2

z2
k

∂k Ek

�2

[(Ek + η)2 +�2]2
, (B.7)

where the integration is over the energy range of the coherent part of the spectrum. However,
considering � → 0, the integrated function is non-zero only in a narrow interval around
Ek + η = 0, i.e., for k ≈ kF. Assuming the slowly varying part of the integrand to be constant,
the integral reduces to

∫ ∞

−∞
dEk

�2

[(Ek + η)2 +�2]2
= π

2�
= πτ. (B.8)

Comparison with equation (B.2) then yields

σ(0) = 4κ2σ0

π2
(sin kF)

2

[
z2

k

∂k Ek

]

k=kF

τ ≡ Dτ/π. (B.9)

According to equation (B.3), for 1/τ → 0, the Drude singularity takes the form

[Re σ(ω)]D = Dδ(ω) = 4κ2σ0

π
(sin kF)

2

[
z2

k

∂k Ek

]

k=kF

δ(ω). (B.10)

In particular, in the WC approximation with γ = 0 in equation (25) and κ = 1,

D = 2te2azk sin kF. (B.11)

To check the above considerations, we briefly examine the free-electron case. In the latter,
Sreg → 0, and the kinetic energy per site is given as

εkin = 1

N

∑

|k|<kF

(−2t cos k) = − 1

π
2t sin kF. (B.12)

Since zk = 1, equation (34) is fulfilled.
In the SC limit g2 � 1, the leading term of D is

D ≈ W̃ e2a sin kF, (B.13)

having the form of the Drude term of free carriers with half-bandwidth W̃ .
Comparing this estimate of D to the integrated regular part of the conductivity Sreg, we

find that the Drude part is negligible in the SC limit, so that the kinetic energy is determined by
Sreg according to the f-sum rule (34). To demonstrate this, we shall not use equation (24), but
instead start with [Reσ(ω)]A following from equations (A.6), (A.7), (A.9), and carry out the
integration over ω before integrating over k. The dominating part of [Reσ(ω)]A for estimating
Sreg in the SC limit (corresponding to the contributions (A3) in figure 2) reads

Re σ(ω) = 2σ0

π2ω
e−2g2

∑

s�1

(2g2)s

s!
∫ π

0
dk ′zk′θ(−Ek′ − η)

×
∫ π

0
dk ′′zk′′θ(Ek′′ + η)δ(ω − sω0 − Ek′′ + Ek′ ), (B.14)

where we assumed |Ek | < ω0 for all Ek in the SC limit. The integration over ω gives

Sreg = 2σ0

π2
e−2g2

∑

s�1

(2g2)s

s!
∫ π

0
dk ′zk′θ(−Ek′ − η)

×
∫ π

0
dk ′′zk′′θ(Ek′′ + η)

1

sω0 − Ek′′ + Ek′
. (B.15)
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To estimate Sreg, we set zk′ , zk′′ = 1 and assume Ek′ , Ek′′ � sω0. Accordingly, the rational
function in equation (B.15) is replaced by 1/sω0 and the integrals over k ′, k ′′ simply give kF

and π−kF, respectively. The Fermi wavevector corresponding to the band population at T = 0
is kF = nπ . The resulting estimate following from equation (B.15) is thus given as

Sreg = 2σ0

ω0
n(1 − n)

∑

s�1

e−2g2 (2g2)s

s!
1

s
= 2σ0

ω0
n(1 − n)

〈
1

s

〉

2g2

. (B.16)

The brackets symbolize averaging with respect to the Poisson distribution with the
parameter 2g2, and the concentration dependence of equation (B.16) is in agreement with
standard small-polaron theory based on the atomic-limit approximation [40].

Comparison of equation (B.16) and equation (B.13) reveals that the Drude term in the
f-sum rule (34) is negligible in the SC limit, so that εkin is proportional to Sreg,

εkin = − (2t)2

ω0
n(1 − n)

〈
1

s

〉

2g2

. (B.17)

To make another check of the latter result, we compare equation (B.17) to the kinetic
energy of one polaron at the bottom of the band, obtained from equation (A.3) as t[∂k Ek]k=0

in [49]. Keeping only the leading term with respect to e−g2
, setting zk = 1 and neglecting Ek

in comparison to ω0 as above, we obtain

Ekin = − (2t)2

ω0

〈
1

s

〉

2g2

. (B.18)

Assuming n � 1, εkin = nEkin, in accordance with equation (B.17).
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